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This study seeks to resolve the sidewall boundary layers forming in the axial and radial directions of a bidirectional

vortex chamber. Our analysis is initiated by the formulation of the laminar boundary-layer equations via an order of

magnitude reduction of the incompressible Navier–Stokes equations at thewall. Asymptotic theory is then applied to

linearize and systematically truncate the governing equations, thus converting them from partial differential

equations to more manageable ordinary differential equations. Scaling transformations are additionally applied to

resolve the rapid changes arising near the sidewall. Because of the spatial character of the outer solutions, further

transformations of the dependent variables are undertaken to secure the axially changing outer conditions. Through

the use of matched-asymptotic expansions, we recover similar boundary-layer structures in all three orthogonal

directions: the axial and radial components presented here, and the wall-tangential boundary layer obtained

previously. This behavior is consistent with the resultant velocity being dominated by its tangential component and

with the tangential boundary layer being axially invariant. These factors cause the axial layer to remain uniform in

the streamwise direction. Based on the ensuing asymptotic results, viscous corrections at the wall are seen to be

mainly dependent on the vortex Reynolds number, V. The latter combines the swirl number, the Reynolds number,

and the chamber aspect ratio. Having obtained the three components of the velocity, essential flow characteristics,

such as pressure, vorticity, swirling intensity, and wall shear stresses, are evaluated and discussed.

Nomenclature

Ai = inlet area
a = chamber radius
b = chamber outlet radius, b < a
l = chamber aspect ratio, L=a
p = normalized pressure, �p=��U2�
Qi = normalized volumetric flow rate, �Qi=�Ua2� � ��1
�Qi = inlet volumetric flow rate

Re = injection Reynolds number, Ua=�� 1="
r, z = normalized radial or axial coordinates, �r=a, �z=a
S = swirl number, �ab=Ai � ���
s = scaled transformation variable, �� � ��=�
U = average inflow velocity in the tangential direction,

�u��a; L�
u = normalized velocity � �ur; �uz; �u��=U
u� = normalized swirl/spin/tangential velocity, �u�=U

V = vortex Reynolds number, QiRe�a=L� � �"�l��1
	 = constant, 1

6
�2 � 1 ’ 0:644934

� = normalized outlet radius, b=a
� = � minus rescaled layer
�w = wall boundary-layer thickness, ��w=a
" = perturbation parameter, 1=Re� �=�Ua�
� = transformed variable, �r2


 = inflow parameter, Qi=�2�l� � �2��l��1
� = kinematic viscosity, �=�
� = density
� = modified swirl number, Q�1i � S=����

Subscripts

i = inlet property
r = radial component
z = axial component
� = azimuthal component

Superscripts

o = outer (inviscid) solution
� = dimensional variables

I. Introduction

C HARACTERIZATION of unidirectional vortex flows has
remained a central topic of interest since its earliest beginnings,

marked by the work of Rankine [1] in 1858. Other notable advance-
ments may be attributed to Lamb–Oseen [2,3], Burgers–Rott [4,5],
Batchelor [6], and others. These basic flows remain valuable tools in
modeling natural atmospheric and stellar phenomena [7,8]. For
example, the Rankine vortex is still used as a crude approximation
for describing the bulk motion of hurricanes and other large, atmo-
spheric, swirl-dominated patterns. Jupiter’s Great Red Spot is also
regarded as a Rankine type vortex [9]. Lamb–Oseen and Burgers–
Rott vortices are closely related in that they can both be defined in
terms of a Gaussian function [10]. They become identical when
suitably normalized, and both can be applied to localized atmo-
spheric swirling flows such as tornados, dust devils, andwater spouts
[11]. As they are relevant to a variety of phenomenological applica-
tions, interest in their behavior continues to rise. The reader is
referred in this regard to recent investigations by Alekseenko et al.
[12], Eloy and Le Dizès [10], Schmid and Rossi [13], Olendraru and
Sellier [14], Pérez-Saborid et al. [15], and others. Included among its
pertinent applications, the Lamb–Oseen solution appears to be a
viable model for trailing vortex streaks produced by lifting bodies
and other such vortices that dissipate with time as a result of shear.
These, however, are restricted to unidirectional vortex distributions.

A glimpse at bidirectional motion may be caught in Sullivan’s
1959 solution of an external two-cell vortex [16]. Sullivan charac-
terizes the swirl velocity in terms of integral functions and mates
this profile with both axial and radial components. Common to all of
these models is the existence of two fundamental regions: a forced
vortex forming around the axis of rotation and a free vortex that
is essentially irrotational. Whereas the free vortex is inviscid, the
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character of the forced vortex is dominated by viscous stresses. In
these models, the forced vortex diameter increases while the maxi-
mum swirl velocity diminishes with successive increases in viscosity
(see Vatistas et al. [17–19]).

In the context of bidirectional flow, Bloor and Ingham [20] have
analyzed the flow in cyclonic separators assuming a conical geo-
metry that incorporates a vortexfinder. Their solution, albeit inviscid,
may be considered a milestone achievement in advancing the theory
of confined swirl-dominated flows. Bloor and Ingham’s motivation
was industry driven, specifically geared toward cyclonic devices
(see Fig. 1). These are widely used in the petrochemical, mineral,
and powder processing industries. As for its application to rocketry,
Chiaverini et al. [21–23] may be said to have pioneered the imple-
mentation of bidirectional swirl technology in the development of
liquid rocket thrust engines, including the self-cooling vortex com-
bustion cold-wall chamber (VCCWC).

The first exact solution to Euler’s equations in reference to the
VCCWC flowfield was developed by Vyas and Majdalani [24]
directly from first principles. It was further extended to spherical
geometry by Majdalani and Rienstra [25] and, to the treatment of
conical cyclones, by Barber and Majdalani [26]. A complementary
set of Eulerian solutions of the Beltramian type were later produced
by Majdalani [27], who used the Bragg–Hawthorne equation
as a starting point. These inviscid solutions resembled Bloor and
Ingham’s in exhibiting a singularity at the centerline. Shortly there-
after, viscous corrections were derived to overcome the swirl
velocity’s singularity at the origin and the no slip at the sidewall in the
tangential direction [28]. Thus, with the exception of Bloor and
Ingham [20], no other bidirectional vortex model has been advanced
despite its relevance to both the propulsion and particle separation
industries. Yet Bloor and Ingham’s model remains, to this date,
inviscid and singular at the vortex axis [20]. The samemay be said of
the class of Beltramian flows described in [27]. For this reason, the
present article is aimed at developing an improved representation of
the bidirectional vortex that secures the sidewall boundary layers in
all three spatial directions: axial, radial, and tangential. The effort
complements the work initiated in [28], which focused on the
confined, complex lamellar vortex in a right-cylindrical chamber.

The viscous solutions of the bidirectional vortex, including those
for the axial and radial velocities presented here, offer several
unique attributes when compared to classic models arising in swirl-
dominated configurations. The historical Rankine vortex, which is
still employed in certain applications, remains overly simplistic. It
exhibits a strictly one-dimensional character that takes no account of
the inherent axial and radial velocities induced by the low-pressure
region forming around its axis. Furthermore, its piecewise nature

does not permit the smooth matching of its forced vortex core to its
outer vorticity-free region. This is contrary to the present analysis in
which a unifying, uniformly valid approximation of the bidirectional
vortex is achieved through the use of matched-asymptotic expan-
sions. Along similar lines, the Lamb–Oseen [2,3] and Burgers–Rott
vortices [29,5] exhibit comparable swirl velocities although they
remain limited to unidirectional motion. Bidirectionality is featured
in Sullivan’s unconfined vortex [16] and Bloor and Ingham’s conical
model [20]. However, the former is expressed using an integral
formulation that limits its applicability whereas the latter, being
inviscid, contains the usual singularity at the centerline. Furthermore,
neither Sullivan’s nor Bloor and Ingham’s models seek to satisfy the
physical requirement of no slip at a boundingwall. It can thus be seen
that, unlike most historical models that discount the presence of an
outer boundary, the confined bidirectional vortices under consider-
ation entail, by necessity, viscous interactions with a chamber wall.
The evaluation of viscous stresses becomes an integral requirement
when considering roll torque, stability, and heat transfer. For more
detail on this subject, the reader is referred to a survey on swirl-
dominated motions by Batterson et al. [11].

Beyond the physical necessity to capture viscous effects, the work
presented here details a novel mathematical procedure for match-
ing solid surface interactions to a preexisting inviscid base flow.
By systematically truncating the Navier–Stokes equations, compact
boundary-layer equations are recovered. At the outset, a complicated
set of coupled partial differential equations (PDEs) are reduced to a
single, more manageable, independent set of ordinary differential
equations (ODEs) for the boundary layers.

The accurate treatment of the problem’s boundary layers is helpful
in predicting several flow characteristics. These include the spatial
evolution of the swirling intensity, the magnitude of the surface
stresses, and the potential for roll torques. These can play an impor-
tant role in the design of propulsive and guidance equipment. The
viscous boundary layers are also a prerequisite for initiating a thermal
analysis of this problem.

To engage the treatment of boundary layers at the confining
sidewall, standard asymptotic techniques are applied to the yet-
untreated radial and axialmomentum equations. Thesewill enable us
to construct uniformly valid, matched-asymptotic approximations
for the two remaining components of the velocity. We initiate
the analysis by reducing the Navier–Stokes equations to recover
Prandtl’s boundary-layer equations [30]. We then follow Majdalani
and Chiaverini [28] and Conlisk [31] in seeking asymptotic simpli-
fications that ultimately lead to the desired solutions. We thus derive
new expressions for the pressure distribution, shear stresses,
vorticity, swirling intensity, and other characteristics of the boundary
layers.

II. Mathematical Formulation

The mathematical model, nomenclature, normalization, and
coordinate system follow those employed by Majdalani and
Chiaverini [28] (see Fig. 2). We recognize that the decoupled axial
and radial profiles are characterized by different velocity and length
scales than those affecting the tangential motion. Renormalization
with respect to characteristic parameters in the longitudinal direc-
tion is not necessary as it will result in the same outcome. To remain
consistent throughout, the original nomenclature is used here.
Accordingly, spatial coordinates are normalized by the radius a,
pressure by �U2, and velocities by the average wall-tangential

inflow
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Fig. 1 Sketch of cylindrical (left) and conical (right) cyclone separators
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Fig. 2 Idealized chamber geometry and coordinate system.
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injection speed U. As usual, the flow is assumed to be axisymmet-
ric and steady. Our small viscous parameter " is defined as
Re�1 � �=�aU�.

A. Axial Corrections

The axial boundary-layer equations can be obtained according to
Prandtl’s order of magnitude reduction applied to the cylindrical
Navier–Stokes equations [30]. These are deduced by truncating at
O���, where � is the characteristic boundary-layer thickness. We
consider "� �2, r� �, and uz � z�O�1�. Furthermore, we assume
that parallelflows evolve atO�1� (Tetervin [32]). The boundary-layer
equation can thus be rearranged and simplified. In nondimensional
form, it can be written as

ur
@uz
@r
� uz

@uz
@z
�� @p

@z
� "

�
@2uz
@r2
� 1

r

@uz
@r

�
(1)

with the conditions (
uz�1; z� � 0

lim
r!0
uz�r; z� � u�o�z

(2)

It should be noted that Eq. (1) represents Euler’s axial momentum
equation that has been modified by including the dominant compo-
nents of viscous stresses. The concept of initiating the boundary-
layer treatment from a regularized form of Euler’s equations has, in
fact, been used in similar physical contexts. Examples abound and
onemay cite, for example, the characterization of vorticity generated
along the axis of a solid rocket motor by Balachandar et al. [33].

Here u�o�z � 2�
z cos��r2� represents the outer solution that must
be recovered as uz�r; z� leaves the near-wall region. To begin, the
pressure gradient term is extracted from the inviscid solution,
@p=@z��4�2
2z. The inflow parameter 
 is defined by Vyas and
Majdalani [24] to be 
�Qi=�2�l� � �2��l��1, where Qi is the
normalized volumetric flow rate and l is the aspect ratio, L=a. The
inflow parameter varies with the reciprocal of the swirl number to the
extent that, for a swirl-dominated flow, �l� 1; the small relative
size of 
 justifies ignoring the axial pressure gradient. This will
be later shown more formally using scaling analysis. Another
simplification can bemade here after Conlisk [31]. Noting that radial
gradients dominate (@=@r� @=@z), axial derivatives may be
ignored. This assumption is further confirmed by the outer axial
pressure and velocity gradients that are small relative to their radial
counterparts. The final assumption concerns the outer radial velocity
to be used to approximate the variable coefficient in the boundary-
layer equation. Applying these assumptions to Eq. (1) delivers the
compact form

"
1

r

@

@r

�
r
@uz
@r

�
� 

r
sin��r2� @uz

@r
��4�2
2z (3)

At this juncture, a useful variable transformation may be imple-
mented. Letting �� �r2 and @=@r� 2�r@=@�, substitution into
Eq. (3) yields

"

�
@2uz
@�2
� 1

�

@uz
@�

�
� 


2�
sin��� @uz

@�
���


2z

�
(4)

To more easily confront the rapid changes near the wall we seek a
scaling transformation that applies to the boundary-layer region (see
Fig. 3). Because r! 1 corresponds to �! �, we select the
stretched coordinate transformation

s� � � �
�

; �� � � s� (5)

We thus arrive at

"

�2

�
@2uz
@s2
� �

� � s�
@uz
@s

�
� 


2��� � s�� sin�� � s��
@uz
@s
�� �
2z

� � s�
(6)

Next, we expand the variable coefficient into

� 


2���� s�� sin��� s�� ’ �



2���� s��

�
�� s�� 1

6
��� s��3

�

�� 

2�

�
1� 1

6
��� s��2

�
’ 


2�

�
1

6
�2 � 1

�
(7)

Upon substitution into Eq. (6), we obtain the linearized form of the
equation

"

�2

�
@2uz
@s2
� �

� � s�
@uz
@s

�
� 


2�

�
1

6
�2 � 1

�
@uz
@s
�� �
2z

� � s� (8)

Then, in an effort to counterbalance the key terms above, we take the
distinguished limit to be �	 "=
. This enables us to revisit Eq. (8)
and eliminate the inhomogeneous and curvature terms at order ". We
extract

@2uz
@s2
� 	

2

@uz
@s
� 0; 	 � 1

6
�2 � 1 (9)

with the dual boundary conditions(
uz�0; z� � 0 no slip

lim
s!1

uz�s; z� � u�o�z merging with outer solution
(10)

Upon careful examination of the boundary conditions on the inner
solution, we find it necessary to apply a transformation of the depen-
dent variable, namely, uz � �z�s��z cos�� � 2�sV�1�; V � 1. In
doing so, a constant limit is placed on �z rather than the variable
condition that plagues Eq. (10). In this vein, we first expand the
derivatives and dismiss terms of order V�1 
 1. We collect

@uz
@s
���z cos�2� s

V
� d�z
ds
� 2�2

z

V
sin�2� s

V
��z

’ ��z cos�2� s
V
� d�z
ds

@2uz
@s2
���z cos�2� s

V
� d

2�z
ds2
� 4�2

z

V
sin�2� s

V
� d�z
ds

� 4�3
z

V2
cos�2� s

V
��z ’ ��z cos�2�

s

V
� d

2�z
ds2

(11)

These turn Eq. (9) into

� �z cos
�
2�

s

V

�
d2�z
ds2
� 	
2
�z cos

�
2�

s

V

�
d�z
ds
� 0 or

d2�z
ds2
� 	

2

d�z
ds
� 0

(12)

As for the boundary conditions, they become

Fig. 3 Coordinate transformations in the sidewall boundary-layer

region.
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8<
:
�z�0� � 0

lim
s!1

�z�s� � ��o�z � 2

(13)

Having identified a second-order PDE with sufficient auxiliary
conditions, partial integration may be pursued to retrieve

�z�s� � 2


�
1 � exp

�
� 1

2
	s

��
(14)

Rewriting Eq. (14) in terms of the original variables, a viscous-
corrected axial velocity is realized. This solution satisfies the no-slip
requirement and reproduces the outer solution at a sufficient distance
from the sidewall. It is given by

uz�r; z� � 2�
z cos��r2��1 � e�14�16�2�1�V�1�r2��

� u�o�z �1 � e�1
4�16�2�1�V�1�r2�� (15)

Here V � 2�
=" is the vortex Reynolds number discussed by
Majdalani and Chiaverini [28]. Equation (15) reflects a similar wall
correction to that observed in the tangential direction, specifically,

u� � u�o�� �1 � e�
1
4Vr

2 � e�1
4�16�2�1�V�1�r2��; u�o�� � r�1 (16)

B. Radial Corrections

Some inviscid profiles such as those obtained by Culick [34] or
Majdalani and Saad [35] satisfy the no-slip condition at the sidewall
by virtue of their orthogonal entry at the injecting surface. The
inclusion of viscosity in the treatment of such problems often leads to
negligible variations in the original flow configuration. The same
may be said of the radial velocity of the bidirectional vortex, espe-
cially that it identically vanishes at the sidewall. For such a solution,
the role and necessity of a viscous correction may not be known
beforehand. To make headway, we proceed by considering the
reduced radial momentum equation in which second-order viscous
terms are retained. This is done in the interest of consistency with the
axial and tangential solutions. The radial analysis begins with

"

�
@2ur
@r2
� 1

r

@ur
@r
� ur
r2

�
� ur

@ur
@r
� u

2
�

r
� uz

@ur
@z
� @p
@r

(17)

where (
ur�1� � 0 no slip

lim
r!0
ur�r� � u�o�r merging with outer solution

(18)

Here u�o�r ��r�1
 sin��r2�. The next step is to ignore axial deri-
vatives by insisting that radial effects dominate. In the process, the
pressure gradient is calculated from the outer solution obtained by
Vyas and Majdalani [24], particularly,

@p

@r
� 


2

r3
sin2��r2��1 � 2
�r3 cot��r2�� � u

2
�

r
(19)

When Eq. (19) is substituted back into Eq. (17), the u2�=r terms
cancel. What remains on the right-hand sidemay be recognized to be
O�
2� near thewall. Thereafter, the inviscid solution may be injected
into the coefficients of the boundary-layer equation. These opera-
tions turn Eq. (17) into

"

�
1

r

d

dr

�
r
dur
dr

�
� 


r3
sin��r2�

�
� 

r
sin��r2� dur

dr
�O�
2� (20)

The standard transformation �� �r2 may now be used. It yields

"

�
d2ur
d�2
� 1

�

dur
d�
� 


����
�
p

4�5=2
sin���

�
� 


2�
sin��� dur

d�
�O�
2� (21)

To magnify the region of nonuniformity, stretching of the radial
coordinate near the wall is required. Using the slow variable s�

�� � ��=�, one may substitute into Eq. (21) and expand the sinu-
soidal terms. One gets

"

�2

�
d2ur
ds2
� �

� � s�
dur
ds
� �2


����
�
p

4�� � s��5=2 sin�� � s��
�

� 


2�

�
�2

6
� 1

�
dur
ds
� 1

4��� � s��O�

2� (22)

where a distinguished limit of �	 "=
 reemerges. Without loss in
generality, we insert �� "=
 into Eq. (22) and drop the terms of
higher order. A simple equation ensues, namely,

d2ur
ds2
� 	

2

dur
ds
� 0 with

�
ur�0� � 0

lim
s!1

ur�s� � u�o�r (23)

To overcome the difficulty of equating a constant limit to a variable
outer solution, we introduce �r � rur= sin��r2�. Subsequent sub-
stitution into Eq. (23) leads to

@ur
@s
�
�

2� cos’

V
����������������������
1 � 2sV�1
p � sin’

V�1 � 2sV�1�3=2
�
�r

� sin ’����������������������
1 � 2sV�1
p @�r

@s
’ sin ’����������������������

1 � 2sV�1
p @�r

@s
;’ � 2�sV�1

(24)

@2ur
@s2
�
�

4� cos’

V2�1 � 2sV�1�3=2
� 3 sin ’

V2�1 � 2sV�1�5=2

� 4�2 sin’

V2
����������������������
1 � 2sV�1
p

�
�r � 2

�
2� cos’

V
����������������������
1 � 2sV�1
p

� sin ’

V�1 � 2sV�1�3=2
�
@�r
@s
� sin ’����������������������

1 � 2sV�1
p @2�r

@s2

’ sin ’����������������������
1 � 2sV�1
p @2�r

@s2
(25)

These derivatives change Eq. (23) into

d2�r
ds2
� 	

2

d�r
ds
� 0 with

�
�r�0� � 0

lim
s!1

�r�s� � �
 (26)

Forthwith, a solution may be achieved in terms of

�r�s� � �
�1 � exp��1
2
	s�� (27)

or, in terms of original variables, we extract

ur�r; z� � �
r sin��r2��1 � e�
1
4�16�2�1�V�1�r2��

� u�o�r �1 � e�1
4�16�2�1�V�1�r2�� (28)

Note that the viscous correction multiplier on the right-hand-side of
Eq. (28) has the same form as that affecting the axial velocity.

III. Results and Discussion

A. Improved Velocity Profiles

The modified axial velocity captures the effects of fluid friction
near the wall. It rectifies the deficiency in the inviscid solution by
permitting the satisfaction of the no-slip condition. Figure 4 illus-
trates the behavior of the present solution with respect to two key
parameters: position and vortex Reynolds number. Because the
original solution was linearly dependent on the axial coordinate, we
continue to observe larger axial velocities at progressively larger
axial distances. As in the case of the tangential velocity, we recognize
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a strong dependence on the vortex Reynolds number, a dimen-
sionless group that combines the viscous Reynolds number, swirl
number, and the chamber aspect ratio. On the one hand, in the
limiting case ofV ! 0, the absence of amean inflow velocity causes
the solution to categorically vanish. On the other hand, we can see
from Fig. 4b that, as the vortex Reynolds number increases, the
viscous layer narrows, and the solution shifts toward its inviscid
form. Mathematically, this observation can be confirmed by setting
V !1 in Eq. (15).

Our hypothesis is confirmed in Fig. 4c, in which the inviscid
solution is gradually regained at a relatively small distance from the
wall. Of course, this observation correlates well with the idea that
viscous effects are secondary in nature. Note that, as the vortex
Reynolds number increases, the inviscid solution becomes nearly
valid over the entire domain. Viscous effects are seen to promote
smoothing ofur, causing both thevelocity and its derivative to vanish
at the wall. This behavior has a direct bearing on the shear stresses
and, consequently, on the potential for roll torques.

B. Axial and Radial Boundary Layers

A closed-form expression can be derived for the boundary-layer
thickness by stating that the boundary layer, �, is the distance
required for the viscous solution to reach 99% of its outer, inviscid
form. As one would expect, it leads to explicit solutions that are
dependent on the vortex Reynolds number. Thus, after locating the
radial position corresponding to the edge of the wall layer, this
distance may be subtracted from the radius of the chamber to deduce
the actual boundary-layer thickness. Given that both profiles exhibit
the same viscous correction, a simple boundary-layer thickness may
be determined that is identical to the tangential wall boundary-layer
thickness, �w, obtained in [28]. In summary, we have

�z � �r � �w � 1 �
������������������������������
1� 4 ln �0:01�

	V

r

’ 1 �
�����������������������
1 � 28:562

V

r
	 14:281

V

�
1� 7:1405

V
� 
 
 


�
(29)

Aone-term approximation in Eq. (29)will accrue an error of less than
1% when V > 722. Figure 4d shows the effect of increasing the
vortex Reynolds number. Clearly, asV increases, the boundary-layer
thickness diminishes. Eventually, as confirmed through Eq. (29), the
thickness becomes inversely proportional toV. Then as ��z; �r� ! 0,
the inviscid solution is recovered.

To verify our scaling analysis, we choose to generate values for 

and " and compare the calculated boundary-layer thickness to the
thickness granted by the distinguished limit.With values of 
� 10�2

and "� 10�4, the calculated vortex Reynolds number is found to be
628, with a thickness of �z � 0:0230. The distinguished limit
predicts �� "=
� 0:01, which is of the same order as the boundary-
layer region. Compared to the tangential core and wall boundary

layers, �c and �w [28], we have �c ’ 2:24=V
1
2 and �w � �z � �r.

Therefore, in reference to the core layer, we may put

�z
�c
� �r
�c
� �w
�c
’ 0:446068

����
V
p �

1 �
�����������������������
1 � 28:562

V

r �

	 6:3703����
V
p

�
1� 7:1405

V
� 
 
 


�
; V > 49 (30)

A comparison between the boundary layers is given in Table 1. At
first glance, the equality between the axial and tangential boundary
layers may appear paradoxical. The unsuspecting analyst may
anticipate a steady Prandtl layer to grow in the streamwise direction.
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However, when recalling that the axial pressure gradient is negligible
and that the dominant radial pressure gradient acts uniformly along
the length of our short chamber, the constant thickness of the
tangential boundary layer is no longer surprising. Mathematically, it
can be seen that the boundary-layer equations are similar in both the
tangential and axial directions. Specifically, both equations are
axially independent and exhibit a distinguished limit that showcases
viscous diffusion and radial convection caused by the outflow
velocity at the edge of the layer (see Fig. 3). This balance supports the
notion that both boundary layers are axially invariant and appear at
the same order.

In hindsight, an alternate physical explanation may be offered. By
rethinking this problem, the requirement for the axial boundary layer
to match its tangential counterpart could have been deduced from
physical arguments alone, without the need for analysis. The reason
is this: In view of the tangential boundary layer being axially
invariant, its thickness �w remains constant at any position inside the
chamber. This feature is illustrated in Fig. 5, in which several circular
strips, representing the envelope of �w, are graphically displayed at
three axial stations. It follows that the thickness of the envelope in the
longitudinal direction (thin dashed lines representing �z in Fig. 5)
must also remain constant to prevent an axial increase in �w.
However, because of boundary-layer orthogonality, any increase in
�z cannot be realized without affecting the size of �w. These obser-
vations confirm the consistency of the asymptotic treatment, as
any other outcome would have constituted a violation of the basic
assumptions underlying the bidirectional vortex model.

It may be helpful to note another perspective on this problem that
may be gained from examining the resultant velocity and its impact
on the flowmotion. Given that fluid particles only sense the resultant
velocity u (i.e., the individual components �ur; u�; uz� are mere
orthogonal projections), it may be safely argued that the resultant
boundary layer is directly controlled by u. At the outset, the
composite layer is seen to be dominated by the swirl velocity, given
that u� u� �O�
� The actual boundary layer forming above the
surface, which is the by-product of the axial and tangential layers,
must therefore conform to the flow being vortex driven. It thus com-
prises a spiraling axisymmetric layer that ascends the chamber verti-
cally without experiencing any significant growth or depreciation.

C. Shear-Stress Tensor

The shear stress may be evaluated to help in determining the force
exerted by the fluid on the sidewall, in addition to the ensuing roll

torque. Based on standard relations, one may first calculate the
stresses acting on the fluid using


rr � 2"
@ur
@r
� "2V

�
sin��r2�
�r2

�1 � e�14	V�1�r2��

� 	
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and
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� @ur
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�
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2
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These are illustrated in Fig. 6. Having fully determined the shear-
stress tensor, it is possible to evaluate its resultant at the sidewall. This
enables us to predict the roll torques in the vortex chamber by
integrating the shear stress over the sidewall. By calculating each
member in Eqs. (31–36) as r! 1, we collect8>><

>>:

�w�rr � 
�w��� � 


�w�
zz � 
�w��z � 0


�w�r� ��1
2
	"V ����1

6
�2 � 1�
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	"2V2z� 2�1

6
�2 � 1��2
2z

(37)

Compared to the results in [28], the added corrections slightly alter
the shear-stress estimation at the wall. With the viscous amendments
introduced here, 
zz and 
rr are found to be identically zero, whereas

zr appears to have a small finite value. A comparison of these results
to those of the inviscid solution is given in Table 2. Using a
Pythagorean sum of orthogonal components, the total shear stress
may be calculated from


�w�0 �
�������������������������������
�
�w�r� �2 � �


�w�
zr �2

q
� 1

2
	"V

�����������������������
1� "2V2z2

p
(38)

This resultant total stress considers shearing forces contributing to
pitch and roll. Although stresses contributing to pitch cancel due to
axisymmetry, those affecting roll do not.

Table 1 Comparison of axial, radial, core, and

tangential boundary layers at several values of V

V �z � �r � �w �c

200 0.07415 0.15852
400 0.03636 0.11209
600 0.02409 0.09152
800 0.01801 0.07926
1000 0.01438 0.07089

uz

uθ

δ w

δ z

axial la
yer

tangential la
yer

δz

δ w

uθ

ez
eθ

er

Fig. 5 Axial invariance of the tangential and axial boundary layers.
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By carefully examining Figs. 6a–6f, it may be seen that the flow is
still dominated by the shear component 
r�, which remains an order
of magnitude larger than 
zr. The roll torque can be determined by

first integrating the azimuthal shear stress at the wall, 
�w�r� , over the
lateral surface of the chamber to determine the tangential force. One
gets

F�w�� �
Z

2�

0

Z
l

0

1

2
	"V dz d�� �	"Vl�Qi�	 (39)

Note that�
�w�r� is used to obtain the stress exerted by the fluid on the
wall. Thus, given a chamber of unit radius, the dimensionless
tangential shear force acting on the inner wall matches the roll torque
T� acting on the same surface.Whenwritten in dimensional form, the
torque may be expressed as

�T� � �	Qi�U
2a3 � �1

6
�3 � ��� �QiUa

� 2:02612 _miUa� 1:01306 _miUD;

D� 2a (40)

Note that the torque exerted by thefluid on thewall acts in the same
direction as the tangential velocity at entry. It is directly proportional
to the mass flow rate _mi, circumferential injection velocity U, and
chamber diameter D. Recalling that �FM � _miU represents the fluid
momentum force according to control-volume theory, the actual
torque is nearly equal to the injection moment couple, namely, the

product of �FM and the chamber diameterD. The small discrepancy of
1.3% between the differential and integral (control-volume) analyses
may be attributed to two sources. The first is connected with the
asymptotic approximations entailed in the analysis (such as the
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evaluation of 	), and the secondmay be ascribed to the use ofU, both
as the average tangential velocity in the control-volume analysis
based on an average mass flow rate _mi and as the maximum velocity
at entry in the differential analysis.

D. Pressure Distribution

The pressure is evaluated with the viscous corrections at hand.
Based on Euler’s equations, we obtain a leading-order solution from
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r
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@ur
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@z

(41)

Injecting the improved representations for the velocity components,
we retrieve
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Equation (42) may be carefully simplified and collapsed into
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’ 1
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�1 � e�14Vr2 � e�14	V�1�r2��2 (43)

As for the axial gradient, it can be similarly obtained from
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@r
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At the onset of this calculation, it may be realized that the axial
gradient is of order 
2. One may also recall that radial terms of order

2 have been discounted elsewhere. To remain asymptotically
consistent with the truncation order incurred in this model, the axial
gradient is hereby dismissed. It may be easily shown that its retention
is immaterial.Moreover, we are nowable to retrieve the pressurefield
from Eq. (43).

With the help of symbolic software [36], Eq. (43) may be
integrated and anchored to a constant reference pressure at the wall,
p0 � p�1�. The result is
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where Ei�x� denotes the second exponential integral function,

Ei�x� � � � ln jxj �
X1
m�1

xm

m!m
;

� ’ 0:5772156649 �Euler's constant� (46)

Note that when Eq. (45) is compared to its precursor in [28], an
additional term appears that may be attributed to the influence of the
axial boundary layer. This term is �r�2 expf� 1

4
V�	� �1 � 	�r2�g.

Nonetheless, when the pressure is plotted in Fig. 7, the influence of
this term is found to be small. We deduce that the axial and radial
corrections for the pressure are minor.

E. Vorticity and Circulation

1. Vorticity

The axisymmetric vorticity is given by
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In the Rankine vortex [1], a piecewise solution is posited in which
the rotational core is governed by solid-body rotation, and the
irrotational tail is derivable from a scalar potential. Obviously, no
vorticity can originate from the tail, especially in an unbounded
domain. In the confined bidirectional vortex, a section of the free
vortex segment resembles that of Rankine’s and remains, as such,
vorticity free. Axial vorticity is only recovered in the vicinity of the
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Table 2 Comparison of the inviscid and viscous shear-stress

components evaluated at the sidewall

Wall shear stresses With no axial/radial
boundary layers

With tridirectional
boundary layers


�w�rr 2"2V 0


�w���
0 0


�w�zz �2"2V 0


�w�r�
��	
 ��	



�w��z
0 0


�w�zr 0 2	�2
2z
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wall and core regions as seen in Fig. 8. The expression that we arrive
at is identical to that of Majdalani and Chiaverini [28], particularly,

�z ’ 1
2
V�e�14Vr2 � 	e�1

4	V�1�r2�� (48)

The tangential vorticity �� is of order 
 and is hence small in
comparison to the axial component. This behavior reinforces the
character of the flowfield as being fundamentally swirl dominated.
However, although the tangential vorticity is approximately zero
throughout the majority of the chamber, its contribution becomes
appreciable in the sidewall region.

2. Circulation

The circulation � can be directly related to the vorticity through
Stokes’s theorem, namely,

��
ZZ
A

�r � u� 
 n dA (49)

In our case, � is the axial component of vorticity integrated over the
circular cross-sectional area of the chamber A. This operation
translates into
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Note that the integral vanishes identically. Upon further scrutiny,
one identifies a one-to-one cancellation of the vorticity products in
the core region with those in the boundary-layer region. For external
flows, as for some of the classical vortex models that exhibit a
singularity at the core, a finite circulation is obtained when the
singularity is included in the domain of integration [37].

F. Swirling Intensity

As a predictor of mixing potential with respect to various config-
urations, we evaluate the swirling intensity according to Chang and
Dhir [38], and aptly apply it to the bidirectional vortex. We find
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Subsequent symbolic programming may be used to evaluate ~�; we
get
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which is true for V > 49; here C�1� ’ 0:779893, where C�x� is the
Fresnel integral defined as
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�
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2
�r2

�
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Equation (52) provides an accurate and compact expression for the
swirling intensity. Note that as the vortex Reynolds number becomes
very large, the swirling intensity approaches an asymptotic value
given by
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�C�1�
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���
2
p 1


z
� 0:866244


z
(54)

This can be inferred graphically from Fig. 9. Note that Eq. (52)
is identical to the one found by Majdalani and Chiaverini [28]. We
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conclude that the axial and radial boundary layers have a secondary

impact on ~�.

IV. Conclusions

This study extends our analytical treatment of the bidirectional
vortex, which is based on solutions obtained from first principles.
Both axial and radial boundary layers at the sidewall, which have
been dismissed in previous analyses, are accounted for and resolved.
Whereas the axial boundary layer is required to bring the parallel
component of the velocity to observe the no-slip condition, the radial
layer is formed to prevent the abrupt clipping of the radial velocity at
the sidewall. The work parallels the analysis of the wall-tangential
boundary layer that has resulted in a rectified form of the swirl
velocity. Using similar perturbation tools, the theory of matched-
asymptotic expansions is applied to capture the small viscous effects
at the confining boundary. Additionally, both independent and
dependent variables are transformed, lest an intractable problem is
obtained. In the tangential direction, a simple boundary condition
is imposed on the conserved angular momentum in the far field,
namely, a pure constant corresponding to a free vortex, that is,
�ru�� � 1. Presently, the outer solution corresponds to sinusoidal
functions of at least one variable. Thus, after several transformations,
expansions, and asymptotic reductions, uniformly valid approx-
imations are derived for both axial and radial velocities. The viscous
corrections are found to mirror those constructed in the tangential
direction. Their role is to cause the axial velocity to vanish at the
sidewall while providing ameasure of tempering in the radial profile,
causing it to terminate smoothly. We note that, in the process of
establishing the inner equations that control the rapid changes in the
vicinity of the wall, expressions are obtained that resemble those
appropriate for two-dimensional boundary-layer analysis.

The novelty in the present approach stands, perhaps, in the
systematic procedure used to reduce the original PDEs into simpler
ODEs, followed by leading-order expansions of the coefficients
arising in the convective terms. Although classic boundary-layer
theory suggests searching for either integral or similarity solutions to
the governing equations, neither routes rely on asymptotic matching
to produce uniformly valid solutions throughout the domain.

In light of the new corrections, several key characteristics of the
bidirectional vortex are quantified. Theoretical thicknesses for the
axial and radial layers are extracted, and these are compared to both
wall-tangential and core boundary layers. The axial and radial
boundary layers are found to be of equal size and consistent with the
tangential layer �w obtained byMajdalani andChiaverini [28]. These
layers are inversely proportional to the vortex Reynolds number to
the extent of increasing with the viscosity, aspect ratio, and swirl
number. By the same token, they become thinner with successive
increases in the circumferential velocity.

The uniformity observed in the boundary layers, which may be
surprising at first, may be physically anticipated without the need for
asymptotic analysis. Given that the resultant velocity is nearly equal
to the tangential velocity, the boundary-layer thickness is dominated
by its tangential component.Moreover, the tangential boundary layer
remains invariant in the axial direction to the extent that its thickness
measured along the length of the chamber is found to be identical to
its thickness measured along the circumference. The equality �z �
�r � �w is thus a product of axisymmetry and the invariance of the
swirl velocity in the axial direction.

With respect to the shear stresses, the axial and radial corrections

help to refine the stress tensor in several of its elements. The 
�w�zr term
and, hence, the total shear are seen to exhibit a small axial depen-
dence that cannot be manifested in the absence of wall friction. We

also determine that 
�w�rr and 
�w�zz are not asymptotically small but
strictly zero. Overall, only secondary contributions to the resultant
shear force are realized. With the roll torque being driven by the
tangential component, its dimensional form is found to depend on
the fluid moment couple, a product of the mass flow rate into the
chamber, the circumferential velocity, and the chamber diameter.

When evaluating the pressure gradient, it may be remarked that
the prevalent terms are those connected with the swirl velocity.

Physically, terms referring to axial and radial velocities or their
derivatives are negligible as they tend to be of order 
2. At length, we
recover nearly the same asymptotic form derived by Majdalani and
Chiaverini [28]. As for the axial pressure gradient, we find all of its
terms to be of order 
2. In the spirit of asymptotic consistency, the
axial pressure dependence is ignored. Qualitatively, a much lower
pressure is captured throughout the core in comparison to the wall
region. This suction pressure is responsible for attracting the flow
inwardly, causing the fluid in the outer annular vortex to negotiate a
180 deg turn at the headwall before reentering the inner vortex. It is
also responsible, in part, for the constant crossflow that persists along
the length of the mantle, causing the annular fluid to leak inwardly
while traversing the chamber height.

With respect to vorticity, the parallelism with the Rankine vortex
continues to hold to some extent. Here, too, vorticity is confined to
either the viscous core or the sidewall region.We also continue to see
vorticity dominated by its axial component and, along with other
essential flow features, to be strongly dependent on V. Interestingly,
circulation in the presence of bidirectional motion is found to be self-
cancelling. This behavior may be attributed to the complex lamellar
nature of the base flow. It is also due to a counterbalance between
vorticities produced in the core and in the sidewall regions. Despite
their presence at the far ends of the domain, their contributions
simply cancel. This result prevents us from expressing the bidirec-
tional vortex in terms of circulation. For the same reason, direct
correlations with historical models defined by this parameter do not
seem possible.

The swirling intensity continues to be largest near the headwall
and mostly dominated by the tangential velocity (Fig. 9). The large
swirling intensities encountered near the headwall turn this region
into an ideal site for mixing. Such behavior is advantageous to the
VCCWC chamber, in which the useful attributes of a cyclone
are exploited. By exhibiting an internal flowfield that promotes
improved mixing between oxidizer and fuel streams, the VCCWC is
projected to achieve high efficiency and low-cost operability.

Continued research is projected for the vortex engine. One topic of
significant interest is the qualification of the inherent cooling
properties of the VCCWC. In this vein, a characterization of the
sidewall boundary layers is necessary to resolve the thermal layers.
Another topic of interest concerns the daunting task of capturing the
Ekman-layerlike boundary layers at the headwall. This is needed to
quantify the axial dependence of the tangential velocity near the
headwall and remove the singular behavior of the swirl intensity.
Other related topics include determining the hydrodynamic and
acoustic stability of the bidirectional vortex, the effect of particle
entrainment, and the flow analog arising in the context of a hybrid
vortex engine for which sidewall injection is considered.
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